
www.ijdesign.org 127 International Journal of Design Vol. 12 No. 3 2018

Background
In this paper we present results of our exploration to generate 
innovative fashion patterns (motifs) which express an understanding 
of complexity. Present-day research into complexity is a 
multidisciplinary area where mathematicians, biologists, physicists, 
epidemiologists and economists, amongst others, cooperate to get 
a grip on complexity. Complex behavior arises from a multitude of 
interacting agents and even if the rules of the agents are not very 
complex, the behavior of a crowd of agents can be overwhelmingly 
complex. The three cornerstones of complexity theory are: 
emergence, transition and resilience (Vermeer, 2014). The research 
area is considered both societally relevant and promising.

The societal relevance of complexity is related to the fact 
that human-made systems increasingly operate at a global scale. 
Epidemics, economic growth, pollution and biological diversity 
can no longer be considered local problems. Both the effect 
scale (global instead of local) and the time scale (seconds instead 
of weeks) are changed by the unprecedented growth of digital 
connectivity (telegraph, telephone, wireless, Internet, Internet 
of Things). Modelling and simulation are important ways of 
working in complexity research and so-called cellular automata are 

some of several options for modelling and simulation (alongside 
evolutionary algorithms, neural networks and network models). 
Cellular automata have been used for studying group behavior 
(Bin & Zhang, 2006), traffic jams (Castillo et al., 2016), pedestrian 
movement (Guan, Wang & Chen, 2016), drug dissolution modelling 
(Bezbradica et al., 2016), leader election problems (Banda, Crane 
& Ruskin, 2015), artificial life (Langton, 1986), and so on.

The goal of our exploration is to design a two-dimensional 
pattern which is potentially applicable in fashion and which 
contains references to a modern understanding of complexity. We 
shall weave the pattern on a Jacquard loom (which has a place in 
the history of computers).
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In order to strengthen the applicability and to keep a visible 
link to the existing fashion culture, we demand that the pattern 
has a recognizable connection to a well-known and expressive 
pattern, for which we choose Pied-de-poule. We shall define 
explicitly what constitutes a Pied-de-poule like pattern in the 
fourth section of this article.

There is a heavy emphasis on this particular weave 
throughout this article, so we should ask whether the approach 
will generalize to other woven patterns or even patterns outside 
the weaving tradition. We choose Pied-de-poule and take 
advantage of the fact that its mathematics is well-understood. 
This makes it possible to make a connection to complexity, not 
only at the level of visual effects, but also at the level of the 
underlying mathematics. We could choose other woven patterns 
such as herringbone, goose eye, or Prince of Wales, which are 
equally suitable as a starting reference and we would be able to 
establish similar connections to complexity, both at the visual and 
the mathematical level. The same techniques used in this article 
are applicable. There are other famous fashion patterns, unrelated 
to weaving, such as Paisley print, Celtic knot and floral patterns, 
for which it would be fascinating to explore such connections; but 
these would be new projects and we can only speculate about the 
visual and mathematical findings. In this work we focus on Pied-
de-poule, leaving other patterns as options for future research.

Both in fashion and in industrial product design, meanings 
are expressed not by text, but by the form: the texture, materials, 
colours and the shape itself. The art and science of expressing 
meanings in such manner is called product semantics (Feijs 
& Meinel, 2005; Krippendorff, 1989). Peirce (Peirce, 1931) 
describes three ways in which (product) semantics work: iconic 
(product looks like...), symbolic (product is a learned code for...), 
and indexical (product looks like a trace of...) (Chandler, 2003). 
Eco distinguishes symbol  use into two types: ratio-difficilis (first 
usage, introducing a new symbol) and ratio-facilis (using a symbol 
from a well-accepted code) (Eco, 1979). In the to-be-designed 
pattern of this project we envision an iconic meaning for both 
the Pied-de-poule character and for the reference to complexity 
theory. But modern complexity theory is not well-known among 
the general public so depending on the context, we will introduce 
it as a symbolic meaning of a ratio-difficilis kind first.

The article is laid out as follows: after an introduction to 
fashion as a complex system and an overview of related work, we 
present Pied-de-poule and cellular automata. Next, we develop 
a family of cellular automata which have non-trivial emerging 
behavior patterns which at the same time resemble Pied-de-
poule. Then, we construct a small collection of contemporary and 
attractive fashion items, using the new pattern, expressing the 
message of being fashionable and presenting a new and modern 
understanding of complexity.

Fashion as a Complex System
The fashion system itself is a complex adaptive system, as we 
shall argue now. It can be described as a dynamic system with 
various feedforward and feedback loops. A first feedforward 
model is the trickle-down effect that celebrities and high-class 
people adopt new fashion first, other people following them with 
some delay. Then, there are seasonal effects: during winter people 
need warm clothes and choose dark colors, for summer they 
need light-weight garments and choose brighter colors. There 
are also trends which are induced by changes outside of fashion 
because designers and consumers are for example influenced by 
the economy; the controversial hemline index goes back to 1926. 
The hemline index is discussed by amongst others Kim and Ahn 
(2015). Fashion designers code their ideas about society into their 
collections. Opinions on what is beauty, even beauty of the human 
body, are different per culture and subculture and change over 
time. New materials and technologies come into existence and are 
subsequently used for fashion.

Most of these models are based on feedforward 
mechanisms (Crane, 1999), but there is a growing number of 
feedback mechanisms. One of the oldest models is about snobs 
(observing others, avoiding similarity) and individuals trying to 
dress similar to others (bandwagon-effect). Then,  there are the 
fashion firms copying each other’s ideas. Miller, McIntyre and 
Mantrala (1993) give a formal description of several of the above 
mentioned feedback loops using matrices of weighting factors. 
Professional trend forecasting firms observe the fashion system, 
the economy, the art world and many other factors to predict the 
colors, fabrics and cuts several years ahead. Their intelligence is 
bought by fashion firms and other trend sensitive companies to 
inform their design decisions. Kosztowny (2015) gives a good 
overview of how trend forecasting firms work. The end-users are 
creative as well, creating items by DIY, unconventional re-use, 
color combinations, haircuts, tattoos, and so on. They are observed 
by the trend forecasters, but also by magazines and bloggers, and 
circulated on social media and thus fed back into the system. Fast 
fashion brands (H&M, Zara) shorten the production cycles and 
adapt within weeks to market responses. The behavior of all this is 
oscillating and hard to predict (if commercial parties could predict 
well, there would be no competitive advantage left). The number 
of active agents is growing quickly and the fashion system itself is 
therefore an example of a complex adaptive system.

Several authors confirm this view: Law, Zhang and Leung 
(2004) argue that fashion consumption is chaotic. Frederiksson 
(2008) describes the various roles such as anti-innovators, 
conservatives, trend creators, trendsetters, mediocre trend followers 
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and mainstreamers (referring to swarm behavior and the butterfly 
effect of chaos theory). Laurell (2016) describes the complexity 
as a number of fashion spheres where users build networks and 
negotiate meaning. Edelkoort (2015) presents a remarkable and 
critical perspective on the fashion system. The critique is not 
about one agent such as a fashion brand, fashion school, or factory. 
The commentary is that the entire system, with its interlocked 
dependencies, has evolved in a very unfortunate direction.

Occasionally fashion designers use their medium par 
excellence, the garments presented in the fashion show, to express 
their interest or concern about a complexity-related societal 
phenomenon. Hussein Chalayan, for example in his Fall/Winter 
2000 show, addressed the themes of migration and mobility, see 
Quinn (2000). Viktor and Rolf did not directly address complexity 
and stress, but instead showed their opposites, simplicity and 
serenity, in their 2013 show called Instant Zen garden, as described 
by Feiereisen (2013).

The complex adaptive systems (CAS) community considers 
simulation as a powerful tool for gaining understanding. Simulation 
is useful for quantitative prediction, typically for logistic challenges 
in (fashion) production chains. For example Cagliano, DeMarco, 
Rafele and Volpe (2011) obtain performance improvements for 
centralized warehousing using system dynamics simulation.

Another type of simulation is Troy Nachtigall’s (2017) Life 
of Fashion Trends, which is descriptive rather than quantitative. 
Besides building a fashion trend simulator based on Conway’s 
Life, Nachtigall wrote a realistic blog that describes the events in 
a simulation run, observing emergent behavior using terms such 
as the movement of trends, the hotspot and notspot.

Related Work
There is a tradition of designing innovative garments which 
announce technological possibilities and pave the way for 
commercial applications. Iris Van Herpen did this with 3D printing 
in fashion, see Kuhn & Minuzzi (2015). Hussein Chalayan did 
this with embedded actuators in garments, see Quinn (2000). 
Pauline Van Dongen did it with wearable displays (flip-dot dress), 
see Van Kessel (2013). The general pattern of these innovations 
is as follows: there is a new technology for which the innovative 
garment proves the potential under new functional, semantic 
and aesthetic demands (outside the context of the lab, where the 
technology is tested amidst a mess of wires and instruments). Many 
examples could be found on the exhibitions Pretty Smart Textiles 
(see http://prettysmarttextiles.com/exhibition2012belgium/) and 
Coded Cloth (Rackham, 2009).

There are examples, though not many, where mathematics 
is seen as a technology, such as the works of Tenthof Van Noorden 
et al. (2014) and joint work by Gabriela Ligenza (2015) and De 
Comité (2014). Pied-de-poule was used as a starting point to make 
sophisticated patterns, adding mathematical principles (recursion, 
turtle-graphics, Lindenmayer systems and sphere packing) in 
(Feijs & Toeters, 2013, 2015b, 2016). The central theme of the 
added principles was fractals and digital production methods were 
deployed, notably laser cutting computer controlled embroidery. 

Such added principles give rise to new aesthetics and at the 
same time they act as references to the classic Pied-de-poule 
and present a first glimpse of new ideas on complexity. More 
precisely, fractals feature a special symmetry: scale-invariance, 
which appears more modern than the old school symmetries 
such as translation, rotation, mirroring and glide mirroring. Doug 
Blumeyer presents a large collection of Pied-de-poule variations 
on his website cmloegcmluin (see https://cmloegcmluin.
wordpress.com/2018/08/13/houndstooth-taxonomy/) including a 
generator called houndstoothcraft to combine various patterns and 
a number of innovative fractals with names such as thousoondth 
and holestooth.

Some garments were created where complexity itself 
is proposed as a technology, but not many. First there are 
straightforward commercial print applications of the well-
known Mandelbrot set. Closer to our work is Fabienne Serriere’s 
kickstarter KnitYak, producing custom mathematical knit scarves. 
Working with mathematicians Elisabetta Matsumoto and Henry 
Segerman, KnitYak produced beautiful Möbius cellular automata 
scarves (Matsumoto, Segerman & Serriere, 2018).

Nervous System (http://n-e-r-v-o-u-s.com) draws inspiration 
from natural phenomena, creating computer simulations to 
generate designs and use digital fabrication to realize unique 
jewelry products. In McBurney (2009) an example is given of a 
simple weaving pattern generated by a cellular automaton, but 
neither a garment nor a discussion of complexity is presented. 
In Holden and Holden (2016) examples are given of fiber art in 
braids, cables and weaves with cellular automata.

The science of complexity is growing fast, witnessed 
by new journals such as Complexity (Wiley-Interscience), 
Computational complexity (Springer), Ecological complexity 
(Elsevier), Journal of complexity (Elsevier), Journal of systems 
science and complexity (Springer) and Complex systems (Complex 
Systems Publications).

  
Figure 1. Classical Pied-de-poule pattern emerging from 

twill weaving.
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What is Pied-de-poule?

In Franklin (2012), we find: “A twill weave in which two colours 
of yarn are used to create a broken checked pattern or a pattern 
of abstract, four pointed-shapes” (p. 446). More precisely, 
Pied-de-poule, also called houndstooth, is the textile pattern 
produced by weaving black and white yarns in alternating blocks, 
both in the warp and the weft, using a balanced twill binding such 
that the block size is twice the float length, thus appearing as shown 
in Figure 1 (which indicates how the weaving works. Source: 
Wikimedia) and Figure 2 (which shows that certain variations 
exist). We shall explain the technical terms such as warp, weft, twill, 
etc. below. Other contrasting colors can be used, but usually, the 
colors are black and white. The pattern’s visual appearance is very 
strong and the characteristic broken checks are easy to recognize. 
The pattern cannot be overlooked. Although Pied-de-poule patterns 
can be printed or knitted, its origins are indisputably in weaving 
(Feijs, 2012; Gennert Jakobsson, 2018; Wilson, 2012).

Pied-de-poule has a long history and the oldest find is the 
Gerum cloak (Sweden), which has been radiocarbon dated to 
360,100 BC, the pre-Roman iron age (Frei, 2009). Pied-de-poule 
was introduced in fashion by the Prince of Wales (Edward the 
VII) in the 1930s and in haute couture by Dior in the 1950s. 
Ever since, until today it is frequently used in haute couture, 
prêt-à-porter and mass-produced fashion. Although the classic 
pattern is old, the same idea is recycled over and over again in 
different contexts, different cuts and different combinations. 
Pied-de-poule is very much alive as shown in Figure 3, featuring 
celebrity Queen Máxima of The Netherlands (image courtesy EM 
Press/Van Emst).

Weaving a classical Pied-de-poule is done on a machine 
called a loom (Gandhi, 2012) in the following way: there is one 
set of yarns in longitudinal direction which is called the warp, and 
one set of yarns in the orthogonal direction which are maneuvered 
or shot one by one through the warp. The latter set of yarns is 
called the weft. When a so-called plain binding is used, the weft 
yarn goes over one warp yarn, then under the next warp yarn, 
then over again, then under, and so on. In another type of binding, 
the weft yarn goes two-over, two-under, and so on. This is shown 
in Figure 1. In general, such a weaving with N1 over, N2 under 

for N1 > 1 or N2 > 1 is called a twill binding if the over/under 
pattern shifts by one for each consecutive weft. If N1 = N2 = N 
the twill is said to be balanced and the number N is called the 
float length. Now, alternatingly use black and white warp yarns, 
say k black yarns, k white yarns, and so on; in the same way use 
alternatingly black and white weft yarns, say k black yarns, k 
white yarns, etc. again. When such warp and weft color scheme 
is deployed in combination with plain binding, the classical 
block patterns typically used for towels, carpenter shirts, and 
chef trousers appear. When such warp and weft color scheme is 
deployed in combination with twill binding, a more complicated 
pattern arises. In particular, taking k = 2N, we get Pied-de-poule 
(houndstooth). There is a family of Pied-de-poule patterns (Feijs, 
2012), one pattern for each integer N > 0. The variation displayed 
in Figure 2 can now be explained very precisely: these are the 
Pied-de-poules for N = 1, 2 and 3.

The Pied-de-poules in Figure 2 have been generated by the 
simple Mathematica program shown in Figure 4. The case N = 1 
is ambiguous in the sense that it is both a block pattern and a 
Pied-de-poule pattern (Feijs, 2012). The case N = 2 is the same as 
in Figure 1 (but the over/under effect is flattened). Beyond N = 1, 
2, 3, 4, …, there is a pattern which arises as a limit case N→∞, 
although this cannot be woven; it can be printed or laser-cut, 
however. The mathematics of Pied-de-poule was previously 
analyzed in Feijs (2012) and Ahmed (2014).

What is a Cellular Automaton?

A cellular automaton is a model of a system of cell objects with 
the following characteristics (Shiffman, Fry & Marsh, 2012): 
the cells live on a grid; each cell has a state; the number of state 
possibilities is finite; each cell has an environment (neighborhood) 
which is a list of adjacent cells and the new state value is obtained 
by a rule from the previous environment states. The simplest 
cellular automata are one-dimensional, but two, three and higher 
dimensional cellular automata can be defined as well. The 
following three principles apply to cellular automata (Schiff, 
2011): homogeneity: all cell states are updated by the same set 
of rules; parallelism: all cell states are updated simultaneously; 
locality: the rules are local in nature.

  
Figure 2. Pied-de-poules for N = 1, N = 2 and N = 3.
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Most of the dynamical features of cellular automata can be 
found in the study of the one-dimensional case (Schiff, 2011). As 
Wolfram (2002) puts it: “sometimes essential properties can already 
be observed in 1D. But cellular automata—and especially 1D 
ones—make the phenomena particularly clear” (p. 880). Therefore, 
in this project we focus on the design of a one-dimensional cellular 
automaton. In the one-dimensional case, an environment is defined 
by its radius r such that r = 1 means that each environment consists 
of 3 cells. In general for r ≥ 1 each environment has 2r + 1 adjacent 
cells. At each point in time, t = 1, 2, 3… each cell has a value which 
we call a state. The state can assume a set Q of distinct values (for 
example Q = {0, 1} is a state space with two values, which we 
conveniently identify with colors, putting white = 0 and black = 1).

As an example of an automaton, the update rule is 
given visually in Figure 5. It could be expressed as a set of 
maplets {1, 1, 1}→0, {1, 1, 0}→0, {1, 0, 1}→0, {1, 0, 0}→1, 
{0, 1, 1}→1, {0, 1, 0}→1, {0, 0, 1}→1 and {0, 0, 0}→0. We 

use the convention of (Wolfram, 1999) that { and } denote tuples 
(lists). The evolution of any one-dimensional cellular automaton 
can be illustrated by starting with the initial state (generation one, 
t = 1) in the first (top) row, the next generation on the second row, 
and so on (Weisstein, 2002).

Towards Simulated Weaving

Before returning to Pied-de-poule, we explore how to design 
cellular automata whose output is like a given woven pattern. We 
give a few rules of thumb, starting with the simplest examples, 
that tell how to design an automaton to realize a user-specified 
design pattern. The rules of thumb are a sufficient starting point 
for Pied-de-poule. However, the general task of designing cellular 
automata for arbitrary specified patterns is a huge territory that 
is mostly uncharted. A cellular automaton’s behavior is hard to 
predict, although we can run simulations. Some serendipity is 
helpful, as the world of cellular automata is full of surprises.

  
Figure 3. Queen Máxima in  

Pied-de-poule coat (photo © and 
courtesy EM Press/Van Emst).

  
Figure 4. Mathematica program to produce a Pied-de-poule pattern for N = 1  

(which can be adapted to N = 2 and N = 3).

  
Figure 5. Example of a cellular automaton (Wolfram’s rule 30).
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By definition, in a plain binding (plain weave), the weft 
(vertical) yarn goes over one warp (horizontal) yarn, then under 
the next warp yarn, then over again, then under, and so on. 
Consider only the specific case of k = 1, i.e., when both the warp 
yarns and weft yarns are alternatingly black and white for every 1 
yarn. Weaving thus we get horizontal or vertical stripes.

Horizontal stripes are easy to simulate by a 1D cellular 
automaton: take any rule which maps:

{1,1,1}→0 and {0, 0, 0}→1 and feed it an initial row of 
all 1s (Wolfram’s automata 1,3,5,7, …127 all can do this). 
Vertical stripes are easy too: deploy {1, 0, 1}→0, {0, 1, 
0}→1 on an initial row of alternating 1s and 0s.
Staying with plain binding, we choose a more interesting 

pattern, small blocks, which is obtained by having an all-black 
warp and an all-white weft (no k needed). This produces a block 
pattern that has blocks of size 1 × 1. Which cellular automaton will 
produce this block pattern and which initial first row do we need? 
To avoid problems near the left and right edges, we reconnect 
the beginning and the end of each row, so our working area is 
cylindric. To make the automaton’s task easier, we begin with 
a row of alternating zeros and ones. Looking for combinations 
of length three in the first row, we find two cases to be handled: 
{0, 1, 0} and {1, 0, 1}. Reading the desired result from the second 
row, we add two maplets: 

{0, 1, 0}→0 and {1, 0, 1}→1. Checking the second row, 
we find no new combinations. We then add default maplets 
(mapping anything else to zero). Thus we constructed an 
automaton which we show in action in Figure 6 (left).
This automaton can sustain the pattern from a properly 

filled initial row (we designed the maplets to do precisely that, 
nothing more). But this automaton does not generate the pattern; 
if we feed it a row with a single 1, nothing will appear.

So our next challenge, the first really interesting challenge, 
is to improve our automaton so it will generate the small-blocks 
pattern from a single seed. First, we check what needs to be done 
to get two blocks in the second row. We add two more maplets, 

one to let the pattern expand leftward into empty space and a 
second to let the pattern expand to the right: {0, 0, 1}→1 and 
{1, 0, 0}→1. Next, we check the third and fourth rows, but as 
no new combinations appear, we are done. Again, anything else 
is mapped to zero. If we launch the improved automaton with an 
initial row having a single 1, the automaton generates the block 
pattern, expanding with the speed of light, one cell per step. This 
expanding pattern is shown in Figure 6 (center).

Now, the question is what happens if we feed it an initial 
row with a few remote seeds. The outcome depends on the relative 
position of the seeds. If their distance is even, their generated 
outputs will merge nicely. Otherwise, they self-organize in 
vertical zones, as in Figure 6 (right).

Next, we undertake yet another challenge: say we have a K 
by K square grid of cells, for example, 12 by 12. Suppose we want 
the two diagonals to be black and all the other cells white. Can we 
design a 1D automaton and an initial first row to realize this goal? 
If we work with two colors, the answer is no, because, in a finite 
environment, there is no way to tell for a given black cell (state 1) 
to which of the two branches of the pattern it belongs. For fixed 
K = 12, a radius of 6 works, yet fails for larger K.

We can also solve this challenge, by working with more 
than two states (colors). We can differentiate the black into 
three different shades of black, say: dark-gray, dark-red, and 
dark-green. For coding we choose numbers: white = 0, dark-red 
= 1, dark-green = 2, and dark-grey = 3. If we insist that the shades 
of black really appear black, we can take very dark colors. The 
transition from the first to the second row is done by {0, 0, 3}→1 
and {3, 0, 0}→2 (the dark-gray cell produces two branches). The 
dark-red and dark-green branches travel leftward and rightward by 
{0, 0, 1}→1 and {2, 0, 0}→2, respectively. Finally, {2, 0, 1}→3 
takes care for merging the two branches (needed after K/2 steps).

If we allow ourselves to see all shades of black as black, 
the automaton solves the challenge. If we launch it with different 
initial rows, we get all kinds of different results, two of which are 
presented in Figure 7. Note that Figure 7 (left) has the same initial 
row as Figure 6 (center), except for a horizontal shift (and using 

  
Figure 6. Automaton for generating a simple block pattern with selected initial seeds.
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dark-gray instead of black). Also note that Figure 7 (right) has the 
same initial row as Figure 6 (right). The two branches cancel out, 
but if we do not want that, we could add extra maplets to get the 
automaton going again.

Next, let us move to case k = 2 (two over, two under, and 
so on) and see how more powerful is it vs. k = 1. We could for 
example try to make bigger blocks of size 2 by 2, which can be 
woven by using a white weft and a black warp as follows: two 
over, two under, etc. for the first and second weft, followed by two 
under, two over, etc. for the third and fourth weft. This example is 
like a doubled plain binding (also known as basket weave). Trying 
to simulate this with an automaton we encounter a problem: the 
same patterns appear in consecutive rows, yet demanding different 
follow-ups. Therefore, colors are indispensable, only enlarging 
the radius does not help. 

We illustrate this usage of color in Figure 8. The task is to 
make blocks of size 2 by 2. We use two different shades of black: 
dark-red = 1, and dark-green = 2, next to two “shades of white” 
(pinky and greeny, coded as −1 and −2). Moreover, there is still 
empty space = 0. For constructing the automaton we use the same 
two steps. The first step is to add sufficient maplets to sustain the 
pattern (maplets {−1, −1, 1}→−2, {1,−1,−1}→−2, {−1, 1, 1}→2, 
{1, 1,−1}→2, {−2, −2, 2}→1,  {2,−2,−2}→1, {2, 2,−2}→−1, and 
{−2, 2, 2}→−1). The colors allow the automaton to perform a 
kind of line counting: red-like indicates an odd line, green-like 
indicates even. The second step is to add maplets so that, from the 
initial seed, patterns expand properly leftward and rightward. For 
example {0, 0, 1}→2, {0, 1, 0}→2 and {1, 0, 0}→−2 will bring 
us from the first row with a single 1 to the next row. Carrying on 
like that we find the desired automaton.

  
Figure 8. Automaton for making large blocks with selected initial seeds .

  
Figure 7. Automaton for making diagonal patterns with selected initial seeds.
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In summary, these are our rules of thumb: (1) from the 
given pattern, read the maplets needed to sustain the pattern, (2) 
add more maplets so the automaton will grow the pattern from a 
single seed (3) if these steps turn out impossible, enlarge either 
the environment or the set of states (more colors). Step (4) is to 
look for unexpected emergent behavior for other initial rows, such 
as cancelling-out, merging or self-organisation. Step (5) is to add 
additional maplets for extra effects. In the next section, these rules 
of thumb are applied to Pied-de-poule.

Designing an Automaton  
for Pied-de-poule
The obvious initial idea was to design a two-dimensional automaton 
such that at each point in time there is a two-dimensional grid, 
which resembles a Pied-de-poule pattern in some areas and which 
evolves to locally resemble such pattern every now and then. We 
found rules which would sustain a given Pied-de-poule pattern and 
we managed to add rules with a limited error-correction capability. 
But growing fresh Pied-de-poule patterns from random seeds was 
harder. Therefore, we switched to one-dimensional automata and 
found ways to obtain Pied-de-poule patterns. Then, taking notice 
of Schiff’s remark that most of the dynamical features of cellular 
automata can be found in the study of the one-dimensional case 
and similar claims by Wolfram, we decided that it was perfectly 
okay to work in one dimension and we stuck to that for most of the 
exploration reported in the present paper. We need a rule, a recipe 
telling how a cell is updated as a function of its environment, so 
for environments of three cells: 

(r = 1 and Q = {0, 1}), the rule should describe 8 cases. One such 
case could be {0, 0, 0}→0, (as before, we call that a maplet). In 
general, a complete rule has q2r+1  maplets where q is the number 
states in Q and r is the radius that defines the environment.

Figure 9 shows that no rule can perform well in making 
Pied-de-poules at t = 1 and t = 2 since at t = 1 there is a need for 
{1, 0, 1}→1 whereas at t = 2 it should be {1, 0, 1}→0. Similar 
situations arise for {0, 0, 0} for example. State 0 is plotted white, 
1 as black. In fact, the problem persists if the environments 
are chosen larger as t = 1 and t = 2 are the same row of states, 
except for a horizontal shift (and similarly for t = 3 and t = 4). 

The problem persists for any r ≥ 1. The proposed approach is 
to use five states (q = 5). There is one quiescent state, serving 
as the blank space where no Pied-de-poule (or anything else) 
has developed yet. Its color is pure white. Moreover, two extra 
kinds (shades) of white and two kinds of black are introduced in 
order to distinguish consecutive rows inside the Pied-de-poule 
(preventing the problem of Figure 9). White and black are the 
colors par-excellence for Pied-de-poule in fashion. Therefore, 
we adopt two light colors (called pinky and greeny) and two dark 
colors (dark-red and dark-green). The formal forgetful mapping 
F(dark-red) = F(dark-green) = black and F(pinky) = F(greeny) 
= white gives the classic black-and-white Pied-de-poule. We 
say pinky and dark-red are red-like, greeny and dark-green are 
green-like. The coding is: quiescent = 0, pinky = −1, greeny = −2, 
dark-red = 1, dark-green = 2. In other words, negative values 
are kinds of white, strictly positive values are kinds of black. 
The plan is to design an automaton such that it can evolve into 
(regions of) Pied-de-poule, in which red-like and green-like 
rows alternate.

Figure 10 shows how a rule of 9 maplets could produce two 
more rows from an initial grid with a single dark-red cell. Formally 
we let r = 1, Q = {−2, −1, 0, 1, 2} (as a set) and then the 9 maplets 
are {0, 0, 0}→0, {0, 0, 1}→2, {0, 1, 0}→ −2, {1, 0, 0}→2, {0, 
0, 2}→ −1, {0, 2,−2}→ −1, {2,−2, 2}→ −1, {−2, 2, 0}→1 and 
{2, 0, 0}→−1. Continuing the development of Figure 10 we find 
that it takes 35 maplets to complete the emerging triangle (which 
begins with a single cell in state 1, dark-red). Of these maplets, 
19 take care of growth at the edge of the blank areas (for example 
{0, 0, 1}→2) and 16 other maplets sustain the development inside 
the Pied-de-poule area (for example {2,-2, 2}→−1, in which 
no 0 occurs). As a complete rule must have q2r+1 = 53 = 125 
maplets (q being the number states in Q) we have considerable 
freedom what to do with the remaining 125 − 35 = 90 maplets. 
As a default rule we map everything else to the quiescent state 
{ _ , _ , _ }→0, which is shorthand for the 90 maplets (everything 
else→0). This formally defines our automaton. More precisely, 
we have one automaton for each grid size (initial row length) 
L. The grid is organized circularly so that the first and the last 
cells are neighbors. We often work with grid lengths L which are 
multiples of 4 (the largest grid size we used in our computations 
so far is 2048).

  
Figure 9. Hypothesized development for t = 1, 2, 3, 4 of a Pied-de-poule of type N = 1 on a one-dimensional grid of 16 cells.  

The two dashed environments indicate that there is a difficulty for a formal rule to produce the pattern if  
we would adopt two states 0 (white) and 1 (black) only.
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Formally the cellular automata AL, one for each positive L, 
are defined by:

• the circular grid of L cells,
• the state set Q = {−2, −1, 0, 1, 2},
• the environment structure defined by r = 1,
• the rule of the 35(+default) maplets:  

(growth) {0, 0, 0}→0, {0, 0, 1}→2, {0, 1, 0}→ −2, {1, 0, 
0}→2, {0, 0, 2}→ −1, {0, 2,−2}→ −1, {−2, 2, 0}→1, {2, 0, 
0}→ −1, {0, 0,−1}→2, {0,−1,−1}→2, {1,−1, 0}→2, {−1, 0, 
0}→ −2, {0, 0,−2}→1, {0,−2, 2}→1, {2,−2, 0}→ −1, {−2, 
0, 0}→1, {0, 1, 1}→ −2, {−1, 1, 0}→ −2, {−2, 0,−2}→1. 
(sustaining) {2,−2, 2}→ −1, {−1, −1,−1}→ −2, {−1, −1, 
1}→ −2, {−1, 1,−1}→ −2, {−2, 2,−2}→1, {2,−2,−2}→ −1, 
{−2, −2,−2}→1, {−2, −2, 2}→1, {1, 1, 1}→2, {1, 1,−1}→2, 
{1,−1, 1}→2, {−1, 1, 1}→ −2, {−2, 2, 2}→1, {2, 2, 2}→ 
−1, {2, 2,−2}→1, {1,−1,−1}→2 and (default) { _ ,_ , _ }→0.

Generating Patterns

The automata AL for L > 4 give an answer to the question whether 
a cellular automaton can generate Pied-de-poule patterns. The 
answer is yes. But is it already interesting? Is there an emerging 
complexity? In Figure 11 we see a typical emerging behavior. The 
initial sparse random grid contains dark-red (1) and dark-green 
(2) seeds, generated according to a probability distribution P(1) 
= P(2) = 1/24 and P(0) = 11/12. We show the evolution for 
t = 1, 2, …2048. Similar patterns appear for different initial grids 
(produced with the same probability distribution). This is precisely 
what Wolfram (1984) claims: “Cellular automata may also be 
characterized by the stability or predictability of their behavior 
under small perturbations in initial configurations” (p. 420). In 
Figure 13 we see what happens in more detail.

The drip stripes of Figure 11 are an emerging phenomenon. 
They appear random, but on average they drift slightly to the 
left with a characteristic angle of about 5°. This is an emerging 
property. The emergent behavior of the drip stripes is largely 
independent of the initial configuration (with few exceptions 
such as the initially blank grid, which of course leads to different 
behavior). The drip stripes wobble a bit and occasionally two 
of them meet (and then both stop). Although eventually the 
automaton will evolve toward a repetitive state for most initial 
configurations, the cancelling-out of the last two drip stripes 
usually happens at a high t values. For example, even for a 
modest grid length L = 256 we find that it typically takes between 
10,000 and 100,000 time steps for the drip stripes to disappear 
(sometimes even more). Wolfram defines a class II automaton as 
an automaton which rapidly converges to a repetitive or stable 
state; our automaton does converge, but not rapidly. Initially, the 
grid is crowded by drip stripes and they meet easily and then 
stop. But the last two drip stripes can be running in parallel for a 
significant vertical distance (time). The fewer drip stripes remain, 
the longer it takes for them to disappear.

To gain a better understanding of what happens here, 
we tested AL

sustain where AL
sustain is like AL but having the growth 

maplets removed (only retaining the sustaining maplets). We 
tested AL

sustain on all 4 initial non-zero grids for L = 1, 2, 3, 4, 6, 
8, 16 and found that, for each L, there exist one or more initial 
grids which produce sustainable patterns without invocation of 
the default rule. These patterns are fixed points of the automaton 
(and are also fixed points of larger grids). A few of them are 
shown in Figure 12 for t = 1, …9. There are infinitely many of 
such fixed points which can be classified according to the smallest 
horizontal translation that leaves them invariant (there are in 
essence only four which are invariant under a translation of four 

  
Figure 10. First 12 rows of a Pied-de-poule development (left) and 9 maplets which are sufficient  

for development of the first two rows (t = 2 and t = 3) from the initial row (t = 1).
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cells: the top row in Figure 12. The fourth pattern in the top row 
in Figure 12 is the real Pied-de-poule pattern. The others are a 
kind of Pied-de-poule lookalikes (we call all of those faux Pied-
de-poules).

In Figure 13 we zoom in to see more detail and explain 
what is happening: The initial seed gives rise to expanding and 
self-sustaining areas, where each area is a classic Pied-de-poule, 
a vertical or slanted faux Pied-de-poule or some other faux Pied-
de-poule. But there are not enough maplets in the rule to repair the 
effects of colliding areas. Since the 35 maplets have been obtained 
from a single dark(-red) seed only, the only collision which 
is properly handled is the collision after wrap-around (on the 
circular grid) when two identical Pied-de-poule patterns grown 
from seeds separated by a multiple of 4, collide. We could say that 
the (faux) Pied-de-poule areas collide, like tectonic plates. At the 
plate boundaries, there are hardly any applicable maplets, which 
means that, by default, blank space gets introduced. Once there is 
a combination of non-zero positions and blank space next to it, the 

growth maplets do their work again and feed a non-zero pattern 
into the plate. Occasionally, two plates are reconciled, otherwise a 
boundary region persists. Zooming out, we recognize the collision 
areas as the drip stripes of Figure 11.

But there is a more subtle effect, which is hardly noticeable 
in Figure 11. We need to zoom in as in Figure 14. Inside the tectonic 
plates there are diagonal zones, separated by transitions, such as 
the two zones and the transition highlighted by the zoom lens. The 
transitions run under an angle of 45°. Above the transition there is 
a proper Pied-de-poule, below the transition a kind of faux Pied-
de-poule. The transition happens without blanks. It originates at 
the plate boundary and moves rightwards. There are many of these 
subtle transitions. Even after disappearance of the drip stripes, the 
diagonal zones and their transitions live on.

We claim that the three key phenomena of complexity 
theory, viz. emergence, transition, and resilience (Vermeer, 2014) 
all appear in the behavior of the designed automaton. We also 
played with similar automata obtained by adding extra random 

  
Figure 11. Running the automaton A2048 on a random grid with sparse dark-red and dark-green seeds.

  
Figure 12. Eight of the fixed points of the automaton. Top row left to right: zebra pattern, vertical zigzag, blocks and Pied-de-poule 

(invariant under horizontal translations of 1, 2, 4, and 4 cells, respectively). Second row left to right: diagonal zigzag, elongated  
Pied-de-poule, another elongated/mixed faux Pied-de-poule and complicated faux Pied-de-poule (invariant under 6, 6, 8, 8).
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maplets (typically a few dozen) and found that a wide variety of 
effects could be obtained. In the presence of extra random maplets, 
the Pied-de-poules and faux Pied-de-poules keep on re-appearing. 
Three possibilities will be given later in Figure 15. We do not 
provide a full survey of such possibilities, because the number of 
possible rules (for r = 1 and k = 5) is very large, about 2.3 × 1087.

There is a family of Pied-de-poule patterns (Feijs, 2012), 
one for each integer N > 0. The Pied-de-poule pattern of Figure 9 
is N = 1, just the simplest of the family (which is why sometimes 
it is called puppytooth). We found that it is possible to develop 
cellular automata for larger N as well (provided more colors 
are used). Moreover, one-dimensional automata are just the 
simplest case in a whole range of possibilities: two-dimensional, 

three-dimensional, etc. Perhaps some of the techniques from 
Section Designing an Automaton for Pied-de-poule could be 
generalized to two dimensions, but working two dimensions is 
more difficult since the number of possible rules is huge and 
behavior is hard to predict. 2D is better for dynamic effects, such 
as Conway’s Life, see Gardner (1970). But for choosing the pattern 
to be deployed now we stay with the simplest Pied-de-poule and 
the lowest dimension for the automata (most of the dynamical 
features of cellular automata can be found in the study of the 
one-dimensional case). In view of the less is more principle, we 
feel the message becomes stronger if we use the simplest cases. 
For the remainder of this project, we work with Pied-de-poule of 
type N = 1 and in one dimension.

  
Figure 13. Zooming in on the pattern generated by A2048.

  
Figure 14. Subtle transitions moving rightwards through the tectonic plates.
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In Figure 15 we show the three patterns chosen as the basis 
for weaving the fabric. The leftmost pattern is obtained by the 
same 35 maplets discussed in Section Designing an Automaton 
for Pied-de-poule. Recall that these were derived automatically as 
the minimal automaton which generates the Pied-de-poule of type 
N = 1. The grid size is 1072, the number of steps is 526. Compared 
to the previous images, we have turned 90° so in Figure 15 the 
automaton evolves from left to right. Each pattern is repeated 
twice in the vertical direction, which is the direction of warp 
(according to the way we shall actually weave it in Jacquard).

For the second and third pattern we have added another 35 
maplets, which were randomly generated. We went through this 
process of randomly generating maplets a few dozen times. Most 
of the cellular automata thus obtained produce drip-line patterns. 
However, about ten percent of them behave differently and we 
picked two such automata which we felt interesting. The second 
pattern has grid size 536 and 263 steps. The third pattern has grid 
size 268 and 132 steps (note its characteristic lines at angles of 
45° and 26.57°). 

These three patterns are woven with different scales 
of magnification so that each ends up as 49 × 50 cm. Together 
with a representation of the maplets and brand labels this makes 
a weaving of 150 cm width and 50 cm length. Thus, we have 
16 meters woven by EE Labels in Heeze, The Netherlands, a 
company specialized in woven labels and other products of the 
very best quality to a wide range of leading global brands.

The translation of the proposed representational 2D 
graphical pattern, generated through cellular automata simulation, 
into woven fabric is described next. We present our choices 
regarding the equipment, the warp and the weft.

• Equipment: Jacquard loom (Gandhi, 2012). Although most 
Pied-de-poule fabrics are still produced on traditional looms, 
we have chosen for a modern production technique: a 
computer-controlled Jacquard loom. A Jacquard loom allows 
every individual warp yarn to be lifted or lowered when the 
weft passes. Unlike in classic Pied-de-poule weaving, the 
cells no longer have a one-to-one mapping to the warp-weft 
crossings. The loom has a much higher granularity than the 
cellular automata grids. The mapping was fine-tuned by a 
specialist at EE labels, using proprietary conversion software.

• Warp: black. All warp yarns are black, which is one of the 
default machine configurations. Setting up a Jacquard loom 
with thousands of warp yarns is a huge task, so it is much 
more efficient to work with a standardized warp, in our case 
black. All other colors, including white, are realized by the 
weft. For realizing the leftmost pattern of Figure 15 (the 
pattern with the smallest cells), the implementation of one 
cell takes 6 warp yarns, for the center pattern 12 warp yarns 
and for the rightmost 24.

• Weft: five colors. Inside a dark-green cell of the leftmost 
pattern of Figure 15 for example, the dark-green weft is on 
top almost everywhere, with a float length of six, sometimes 

  
Figure 15. Three different generated patterns.
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two or three. The same holds for the other colors (dark-red, 
greeny, pinky and white). Consecutive weft yarns are densely 
pushed against each other, using 56 shots (weft yarns) per 
centimeter. The weft yarns are much thicker than the warp 
yarns; therefore the black warp is hardly visible. For the 
center and rightmost patterns of Figure 15, a weft-faced 
unbalanced twill binding is used (five over, one under, like 
satin). The backside of the fabric appears as a seemingly 
random mix of long floats in all five colors.

The details of the weaving can be seen in the microscopic 
image in Figure 16, where the diameter of the image corresponds 
to 1 cm of fabric. The image shows a sample of the leftmost 
pattern of Figure 15. The warp yarns appear vertically, the weft 
horizontally. In this sample each cell is implemented by two or 
three weft yarns, but these interlock with the weft of adjacent 
cells, so there are on average five shots per cell.

The Process

The process is presented in Figure 17, in which we explain how 
the coding process is integrated with the fashion design processes. 
There were many iterations in the coding phase and multi-
disciplinary cooperation in the overlapping weaving, design and 
construction phases. The knowledge was distributed over different 
persons, roughly speaking Feijs being most active in the creative 
math research (gray colored area) yet having specific knowledge 
on weaving and having access to a network with expertise on the 
complexity of the fashion system. Toeters is an expert in fashion 
and fashion technology, which includes part of the gray area and 
most of the fashion-related areas. Additional weaving expertise 
and all of the weaving production was contributed by EE labels.

There were many iterations inside the creative math 
research track, which still continued during the interaction with 
the weaving company (track fabric design and weaving) and 
during the initial sketching of the garments (track garments 
design & implementation). The other tracks were more linear. 
Once the actual weaving had begun, the cellular automata were 
frozen. Final details of the garments were added during garment 
design and construction with two extra aims: (1) to be innovative 
(newness, e.g., magnetic zipper instead of traditional closure) 
and (2) to follow contemporary trends (desirability, such as the 
bomber jacket, which is a must-have in today’s collections).

The project appears somewhat skewed towards the coding 
side. This is because we told the story about a new understanding 
of complexity and emergent behavior through the fabric’s pattern. 
Yet we went all the way, up to and including a collection (most 
other coding-based projects in the field stop having achieved a 
single item such as a ring, a hat or a scarf).

The Collection

We have realized a small collection based on the work of the 
previous sections. For the development of the design, we took 
into account that there is a fine balance between the feeling that 
garments fit in current looks, them being old fashioned or very 
innovative (see section Fashion as a Complex System). We aim to 
position the garments as fitting in current society but just a little 
innovative when zooming in.

As a first context, we chose a mathematical art exhibition 
(Toeters & Feijs, 2017). Pattern design, colors, weaving structure 
and presentation context are thus clear. We deal with many 
connotations to the past (Pied-de-poule, familiar colors), but also 
introduce new aspects (complexity theory and cellular automata 
in fashion). As designers, we are in constant dialogue with all 
concerned aspects. The shapes of the items and the garment 
details are last to be defined: the last chance, on a product level, to 
compensate on newness and to create desirability.

In the item definition, we used very classic recognizable 
and well-accepted shapes like the man’s jacket and shirt. In the 
jacket as shown in Figure 18, top row right, we adjusted minor 
details like the side seam position, the connected back panel at the 
top part and the way to enter the pockets (from above). The jacket 
shows the left pattern from Figure 15. The shirt in Figure 18, 
second row left, shows the center pattern from Figure 15. These 
items look very familiar and are well-accepted.

As a very current and fashionable item, we chose a bomber 
jacket which can be found on almost every 2017 catwalk as well 
as on the street. Ours, as shown in Figure 18, second row center, is 
with a twist, as we combine different patterns in one item. It has no 
side seams so that the pattern continues around the body and shows 
the weaving method. There is no lining used, and the garment is 
prepared to be worn inside out as well. We chose for this approach 
because the backside of the woven material is also very interesting.

As another contemporary and fashionable item we chose 
for an A-line dress (as shown in Figure 18, second row right) that 
shows the right pattern of Figure 15. As a more innovative item 

  
Figure 16. Microscopic image of one of the 

computer-generated cellular automata patterns realized as a 
Jacquard-woven fabric.
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Figure 17. Overview of the design process with feedforward and feedback between the different tracks.

  
Figure 18. The six designed garments based on the algorithmically generated patterns.  

The material is Jacquard-woven polyester. Photos by Robin van der Schaft, styling by Maaike Staal (© Marina Toeters).
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we developed a strapless jumpsuit (onesie) as shown in Figure 
19 rightmost and in Figure 18 top row, left. This item is designed 
around the pattern and uses the total width of the fabric once. The 
logo like just above the breasts is followed by all three patterns all 
the way to the ground. The used circumference is exactly 98 cm so 
that the pattern continues over the only seam used in the top part. 
The horizontal white areas between the three patterns introduce 
some visually exciting effects towards the feeling of gravity 
within the garment. Most likely this is because of the position of 
the lines (yet it happened by serendipity). The size is extremely 
long to emphasize the full fabric width.

The sleeveless top, as shown in Figure 18 top row, 
center, is an eclectic patchwork of all leftover pieces. To address 
innovativeness, even more, we introduced a magnet zipper in 
this top. At the detail level we have innovations such as a zipper 
in the classical man-shirt and 3D printed magnet closures in the 
man’s jacket. More details can be seen in Figure 19. Left in Figure 
19, from top to down, we see the pocket on the man’s jacket, the 
magnetic zipper and the eclectic patchwork of the sleeveless 
top, the bomber jacket inside-out and another detail of the man’s 
jacket, viz. the 3D printed magnet closure. Right in Figure 19 is 
the strapless jumpsuit (onesie).

  
Figure 19. Garment details: Pocket, magnet zipper in eclectic patchwork, bomber inside-out and 3D printed magnet closure to the left 

from top to down and a full strapless jumpsuit to the right (© Marina Toeters).
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When making decisions about which patterns to be 
used for which garments, we tried to reflect some of the 
fashion-as-a-complex-system insights discussed in section 
Fashion as a Complex System: The long drip lines in the man’s 
jacket in Figure 18, top row foremost right, can be read as 
a reference to the slow change in men’s wear, where the basic 
design of men’s jackets is very stable over decades, although there 
are tiny changes every season; in essence, this is caused by the 
bandwagon effect mentioned in section Fashion as a Complex 
System: many men just do not want to really stand out by their 
garment choice. The waves of zones of the foremost right pattern 
of Figure 15 can be seen as analogous to trends (discussed in 
section Fashion as a Complex System). They are made visible in 
the A-line dress, as shown in Figure 18, second row right , as 
the trends in women’s wear are more pronounced than in men’s 
wear. Referring to Laurell’s fashion spheres (Laurell, 2016), the 
sleeveless top, as shown in Figure 18, top row center, with all the 
eclectic patches reminds of the fact that there are multiple factors 
contributing to the complexity of the fashion system.

Two of the outfits shown in Figures 18 and 19 were deployed 
by the staff of EE Labels as part of the exhibit EE Exclusives 
during the Milano Design week 2017 at Palazzo Francesco Turati. 
We contacted and received positive reactions from Prof. Dr. Jos 
Baeten, Professor of Mathematics and director of the Center for 
Mathematics and Computer Science in Amsterdam, and Prof. Dr. 
Sjoerd Verduyn Lunel, Professor of Mathematics, Secretary of 
the European Mathematical Society, Chair of the Dutch Platform 
for Mathematics and Director of Research of the Mathematical 
Institute of Utrecht University, who were very enthusiastic about 
wearing the outfits and acted as the models for the photoshoot 
(which is in the catalogue of the 2017 Bridges Mathematical Art 
exhibition; Toeters & Feijs, 2017) and in the short paper (Feijs & 
Toeters, 2017). The American Mathematical Society noticed the 
exhibit, twittering Fabulous fabrics: Cellular automaton-based 
fashion collection and the professional Wolfram Blog wrote about 
this applying new technology to traditional weaving patterns. 
The shirt as shown in Figure 18, second row foremost left, was 
presented in the UNiD Magazine No 32 of the LUCID design 
study association. The complete collection was on the catwalk 
of the first Bridges mathematical fashion show in Stockholm and 
was exhibited during Dutch Design Week in 2018. More venues 
will be addressed in 2019.

Results and Discussion
We summarize our results and claims from five perspectives: 
semiotics, multi-disciplinarity, generative design in fashion, 
complexity theory and the future.

Semiotic perspective: The role of designers is twofold. First 
they want to give form to new products which serve practical needs 
and are satisfying with respect to function, comfort, aesthetics 
and sustainability. At the same time, designers use emerging 
technologies and semiotic tools to convey messages about what is 
going on in the world and point to new possibilities. The work of 
the present paper falls in the latter category: the designed garments 

convey the message that there is a new understanding of complexity 
which is relevant for many disciplines, including fashion and 
design itself. The garments encode the message in an iconic way: 
the patterns appear complex and lack the regularity of traditional 
weaving and printing (iconic in a Peircean sense; Chandler, 2003; 
Feijs & Meinel, 2005; Peirce, 1931). This complexity can be 
easily observed by anyone, without prior knowledge. Fashionable 
is encoded by the puppytooth Pied-de-poule which is visible as a 
recurrent sub-pattern and thus resembles other Pied-de-poules in 
fashion. Additionally, the messages of contemporary, innovative, 
and (again) fashionable are coded in a multitude of ways, as 
explained in section The collection. The garments also code 
the message that there is a new understanding of complexity in 
a two-step manner: whoever has seen a glimpse of Conway’s 
and Wolfram’s works will immediately recognize the cellular 
automata and hence, indirectly, modern complexity theory. But 
modern complexity theory is not well-known among the general 
public and, therefore, discussing the garments offers people an 
opportunity to expand their semantic code, as described by Eco’s 
ratio-difficilis (Eco, 1979).

Multi-disciplinarity perspective: We claim that programming 
is a new craft which is essential for a range of emerging new 
aesthetic possibilities in design and for developing new product 
semantics. Programming is not only needed for the behavior and 
embedded software of electronics in interactive wearables, it is 
also a powerful tool for choosing aesthetic qualities and coding 
messages (coding in the semiotic sense: Eco, 1979). This is 
what this project demonstrates. In this project we worked with 
Mathematica (version 10), one of the most powerful mathematical 
tools available. More and more, the embedded software approach 
and the generative design approach will be mixed, as in Drapely-o-
lightment (Feijs & Toeters, 2015a), Solemaker (Feijs, Nachtigall & 
Tomico, 2016) and Bedtime Stories (Kuusk, Wensveen & Tomico, 
2014). Previous case studies have demonstrated the potential of 
our kind of cross-disciplinary cooperation. Our earlier projects 
included Drapely-o-lightment (a new aesthetics and at the same 
time an exploration into the interplay of hard and soft materials 
while integrating electronics into garments; Feijs & Toeters, 
2015a) and Pied-de-pulse (pushing the frontier of soft actuators by 
embroidering them into the fabric and at the same time inscribing 
a reference to the Pied-de-poule pattern; Feijs & Toeters, 2016). 
These projects would be impossible without the cross-disciplinary 
cooperation of a person with a programming/math background and 
a person with a design/fashion/innovator profile.

Generative design in fashion perspective: As described in 
sections Designing automata for Pied-de-poule and Generating 
patterns it should be noted that the proposed approach does not 
deliver a fixed pattern. As Wolfram (2010) puts it: “In a sense, we can 
use the computational universe to get mass customized creativity”. 
It is a technology for generating unique patterns with considerable 
freedom for mass customization. It works like parametric design—
the choice of rule determines the complexity of the pattern. We 
claim that this generative design perspective can go hand in hand 
with preservation and revitalization of traditional cultural themes 
and craft-related themes (in this case Pied-de-poule) rendering 
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them by new computer-controlled production technologies. Kuusk 
et al. (2014) showed this for digital embroidery, we used computer-
Jacquard to translate our patterns into woven garments.

Complexity theory perspective: We are very attracted to 
this complexity theory. The fashion system is an example of a 
Complex Adaptive System. In this article we represented some of 
our understanding via the advanced programming and production 
tools which we have at hand in the widely accepted medium of 
garments and fashion. The complexity of the fashion system is 
not unraveled, but we claim that we made a contribution, not only 
by this paper, but also through expositions and creating awareness 
of the fact that the fashion system is a complex adaptive system.

Future perspective: Everyone wears garments, can we start 
using them as pieces for educating new complexities? This is 
what we hope to research further in future.
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